
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 153 (2019) 71–79

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research
(CSER).
10.1016/j.procs.2019.05.057

10.1016/j.procs.2019.05.057 1877-0509

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research (CSER).

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2019) 000–000

www.elsevier.com/locate/procedia

1877-0509 © 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research (CSER)

17th Annual Conference on Systems Engineering Research (CSER)

Educating I-Shaped Computer Science Students to Become T-
Shaped System Engineers

Barry Boehma,*, Supannika Koolmonojwongb

a518 Adelaide Drive, Santa Monica, CA, 90402, USA
b1320 3rd St., Santa Monica, CA, 90402, USA

Abstract

With every passing day, software becomes more and more important to the success of the artifacts that we make,
sell, buy, use, and evolve. Software increasingly provides a competitive differentiator for products, ways of
tailoring them for various uses and users, and ways of fixing or evolving them without expensive product recalls.

Unfortunately, as software becomes more and more ubiquitous and complex, an increasing number of new computer
science (CS) courses in web services, big-data analytics, computing security, and machine learning fill up CS
students’ schedules, leaving little room for non-CS courses providing skills outside of CS. This paper summarizes
our experiences in developing and evolving an MS-level software engineering (MSCS-SE) curriculum that takes I-
shaped CS BA graduates and enables them to become sufficiently T-shaped to be able to immediately contribute to
overall system definition and development on being hired, and to improve their T-shaped skills along their careers.

Section 2 summarizes the primary origins and problems with an I-shaped software workforce. Section 3 describes
the origins, development, and evolution of the USC MSCS-Software Engineering program and its foundation-stone,
real-client, 2-semester project course. Section 4 elaborates on the team-project course and its mechanisms for
strengthening the transition from I-shaped to T-shaped systems thinking. Section 5 provides conclusions.

© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research
(CSER)

* Corresponding author. Tel.: 2137408163; fax: 2137404927.
E-mail address: boehm@usc.edu

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2019) 000–000

www.elsevier.com/locate/procedia

1877-0509 © 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research (CSER)

17th Annual Conference on Systems Engineering Research (CSER)

Educating I-Shaped Computer Science Students to Become T-
Shaped System Engineers

Barry Boehma,*, Supannika Koolmonojwongb

a518 Adelaide Drive, Santa Monica, CA, 90402, USA
b1320 3rd St., Santa Monica, CA, 90402, USA

Abstract

With every passing day, software becomes more and more important to the success of the artifacts that we make,
sell, buy, use, and evolve. Software increasingly provides a competitive differentiator for products, ways of
tailoring them for various uses and users, and ways of fixing or evolving them without expensive product recalls.

Unfortunately, as software becomes more and more ubiquitous and complex, an increasing number of new computer
science (CS) courses in web services, big-data analytics, computing security, and machine learning fill up CS
students’ schedules, leaving little room for non-CS courses providing skills outside of CS. This paper summarizes
our experiences in developing and evolving an MS-level software engineering (MSCS-SE) curriculum that takes I-
shaped CS BA graduates and enables them to become sufficiently T-shaped to be able to immediately contribute to
overall system definition and development on being hired, and to improve their T-shaped skills along their careers.

Section 2 summarizes the primary origins and problems with an I-shaped software workforce. Section 3 describes
the origins, development, and evolution of the USC MSCS-Software Engineering program and its foundation-stone,
real-client, 2-semester project course. Section 4 elaborates on the team-project course and its mechanisms for
strengthening the transition from I-shaped to T-shaped systems thinking. Section 5 provides conclusions.

© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research
(CSER)

* Corresponding author. Tel.: 2137408163; fax: 2137404927.
E-mail address: boehm@usc.edu

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2019.05.057&domain=pdf

72 Barry Boehm et al. / Procedia Computer Science 153 (2019) 71–79
2 Boehm and Koolmonojwong / Procedia Computer Science 00 (2019) 000–000

Keywords: T-shaped, I-shaped, MS degree, computer science, systems engineering, edducation

1. Introduction.
With every passing day, software becomes more and more important to the success of the artifacts that we make,
sell, buy, use, and evolve. Software increasingly provides a competitive differentiator for products, ways of
tailoring them for various uses and users, and ways of fixing or evolving them without expensive product recalls.
Unfortunately, as software becomes more and more ubiquitous and complex, an increasing number of new computer
science (CS) courses in web services, big-data analytics, computing security, and machine learning fill up CS
students’ schedules, leaving little room for non-CS courses providing skills outside of CS. This paper summarizes
our experiences in developing and evolving an MS-level software engineering (MSCS-SE) curriculum that takes I-
shaped CS BA graduates and enables them to become sufficiently T-shaped to be able to immediately contribute to
overall system definition and development on being hired, and to improve their T-shaped skills along their careers.
Section 2 summarizes the primary origins and problems with an I-shaped software workforce. Section 3 describes
the origins, development, and evolution of the USC MSCS-Software Engineering program and its foundation-stone,
real-client, 2-semester project course. Section 4 elaborates on the team-project course and its mechanisms for
strengthening the transition from I-shaped to T-shaped systems thinking. Section 5 provides conclusion

2. . Origins of and problems with I-Shaped Software Engineers

When software began to be used for performing functions in a hardware system such as an aircraft, it would usually
appear in numerous places at low levels of the aircraft’s work breakdown structure. For example, an aircraft has
wings as parts, which have ailerons as parts, which have aileron controls as parts, which have sensors as parts,
which have sensor software as parts. This caused most software to be developed as isolated small, low level
Computer Software Configuration Items, with little understanding of their part in the overall aircraft system. Such
narrow foci of the CSCIs owned by other parts of the aircraft hierarchy problems can arise from incompatibilities
with the software in atmospheric, propulsion and attitude sensors to accomplish the stabilization objectives [1].

Such discouragement of software engineers to participate in overall system requirements and architecture decisions
was exacerbated by software capability models such as the Software Capability Maturity Model [2]. Its first Ability
1 of its first Key Process Area of Requirements Management states, “Analysis and allocation of the system
requirements is not the responsibility of the software engineering group but is a prerequisite for their work." Not
only did this stimulate more I-shaped software thinking, but also it excluded software technical experts from
participating in architectural decisions as software evolved from controlling 8% of an aircraft’s capabilities in the
1960s to 80% by the year 2000 [3]. Some other problems created by I-shaped software engineers include:

• The Golden Rule: Do unto others as you would have others do unto you. Programmers often take this
literally and create programmer-friendly user interfaces for doctors, nurses, executives, or hardware
engineers. A better guideline is the Platinum Rule: Do unto others as they would be done unto.

• Computer scientists prize abstraction, and often undermine the value of prototypes by calling users U1, U2,
U3, U4 vs. Jim, Rosa, Ali, and Kathy. We find having the student teams invent Personas to represent classes
of stakeholders is both effective and entertaining.

• Making programmer-convenient, but user-inconvenient decisions: an example is creating 10-day data buckets
making it easy to program but hard for users to relate these to weekly and monthly planning.

A major problem in cyber-physical-human (CPH) systems is that their engineers are generally not aware of the
differences in world-views among hardware, software, and human factors engineers. Table 1 below summarizes
some of these differences. Finally, producing specialized, I-shaped practitioners is often reinforced by university
research and education priorities: the specialists get the PhDs, the Turing Awards, and the Nobel Prizes. Within
academic departments, “breadth” courses are generally within the discipline, not interdisciplinary. Also, many
software engineering courses are taught by instructors with little industrial experience, who tend to teach the
programming methodology material that they know best.

 Barry Boehm et al. / Procedia Computer Science 153 (2019) 71–79 73
Boehm and Koolmonojwong / Procedia Computer Science 00 (2019) 000–000 3

Table 1. Hardware, Software, and Human Engineer World Views

Difference Area Hardware/ Physical Software/Cyber/
Informational

Human Factors

Economies of scale The more hardware units,
the cheaper they are per
unit

The more software units,
the costlier they are per
unit

The larger the team, the
less productivity due to
communications overhead

Nature of changes Generally manual, labor-
intensive, expensive

Generally straightforward
except for software code
rot, architecture-breakers

Very good, but dependent
on performer knowledge
and skills

Incremental
development
constraints

More inflexible lower
limits

More flexible lower limits Smaller increments easier,
if infrequent

Underlying science Physics, chemistry,
continuous mathematics

Discrete mathematics,
logic, linguistics

Physiology, behavioral
sciences, economics

Testing By test engineers, much
analytic continuity

By test engineers, little
analytic continuity

By representative users

Strengths Creation of physical
effects; durability;
repeatability; speed of
execution; 24/7 operation
in wide range of
environments;
performance monitoring

Low-cost electronic
distributed upgrades;
flexibility and some
adaptability; big-data
handling, pattern
recognition; multi-tasking
and relocatability

Perceiving new patterns;
generalization; guiding
hypothesis formulation and
test; ambiguity resolution;
prioritizing during
overloads; skills diversity

Weaknesses Limited flexibility and
adaptability; corrosion,
wear, stress, fatigue;
expensive distributed
upgrades; product
mismatches; human-
developer shortfalls

Complexity, conformity,
changeability, invisibility;
commonsense reasoning;
stress and fatigue effects;
product mismatches;
human-developer shortfalls

Relatively slow decision
making; limited attention,
concentration,
multitasking, memory
recall, environmental
conditions; teaming
mismatches

3. Origins of Creating the T-Shaped Curriculum

When one of the authors (Boehm) was at Thompson Ramo Wooldridge Inc. (TRW), he had the good fortune to lead
an MSCS-SE effort commissioned by Dr. Simon Ramo, the R in TRW and a leading pioneer in systems
engineering. It began with a discussion at one of his periodic Electronic Technology Advisory Group meetings, in
which several TRW divisions indicated that their business units were being constrained by a shortage of good
software people.

Among the resulting initiatives that Dr. Ramo commissioned was an MS-degree work-study program for
outstanding undergraduates in computer science and software engineering to be hired by TRW, which he asked
Boehm to explore and develop with the major local universities, UCLA and USC. However, he said that the
program should not develop pure-software people. He said that the most successful engineers at TRW were T-
shaped people, who had strong technical depth in one discipline, but who also had a working knowledge of other
disciplines. The resulting proposed program was called the TRW MS Degree in Computer Architecture and
Software Engineering.

Initially, we were concerned that UCLA and USC would not be interested in such a program, but at the time they

74 Barry Boehm et al. / Procedia Computer Science 153 (2019) 71–79
4 Boehm and Koolmonojwong / Procedia Computer Science 00 (2019) 000–000

were getting concerned at the decreasing number of US citizens in their graduate engineering programs. It also
helped that Dr. Ramo made a substantial annual contribution to each department’s discretionary fund. The program
did produce a number of future TRW technical leaders, but the bulk of our software new hires continued to be pure
I-shaped computer science graduates.

When Boehm approached early retirement at TRW, he decided that it would be worth a try to increase the number
of T-shaped engineering graduates available to companies and public-service organizations. This led to his
becoming a professor at USC and initially developing an MS program in software engineering that included courses
in user-interaction design, computer hardware-software design, software-system requirements, verification and
validation, and management and economics.

Its main core course was a 2-semester team project course, in which the first semester covered project system
engineering, in developing operational concepts, requirements, architecture, prototypes, development plans, and
generation of evidence that these would be compatible, feasible, and user-satisfactory. Initially each team worked
from the same project need statement for which Boehm served as customer: a fire-department dispatching system in
1993-94 and a library selective dissemination of information (SDI) system in 1994-95.

In the fall of 1994, Boehm was surprised by a request for a meeting with several of the USC librarians. They
indicated that they had been approached by numerous students in the course asking them for information about how
the library worked, and learning about the SDI-system project course. They indicated that the USC Libraries had
needs for software applications for which they had insufficient budgets to develop, and wondered if the project
course could be modified to enable the student teams to develop such applications, particularly in the area of
multimedia archives: student films, fine arts course slides, medical school lung pathology images, medieval
manuscripts, early Los Angeles newspapers, business school stock exchange data, etc.

The 1995-96 version of the course was revised to have each student team work with a library client to work out an
operational concept, set of requirements, user-interaction prototypes, architecture, development plans, and feasibility
evidence for a multimedia archive in the Fall semester, and to develop, verify, validate, and transition the resulting
software and operational procedures to the client’s organization in the Spring semester [4]..

Over the next 23 years, the real-client, team project course and the MSCS-SE curriculum have evolved through a
number of major changes, such as going from programming-intensive to COTS-intensive to cloud services-
intensive. The clients are generally non-software people, coming about equally from campus organizations, local-
neighborhood small businesses, local community-service organizations, and local government. We have also
tailored a counterpart senior-undergraduate capstone project course.

The MS course has produced over 2000 graduates who are considerably more T-shaped than they were when they
came. They have also included students from other engineering departments who want to become more familiar
with software engineering. They have generally done very well in job interviews, and have generally become
corporate assets whose skills have been hard to outsource to India or elsewhere. Several universities have adapted
the approach to their programs, aided by assets such as an Electronic Process Guide for applying the approach [5].
The experience has also enabled us to evolve the Incremental Commitment Spiral Model into a mature book and set
of practices [6], now used as the course textbook.

4. Role and content of the Foundation-Stone Project Course

4.1 T-Shaped Course Practices

Apart from teaching about foundations and theories on systems and software engineering, it is crucial to provide
opportunities to students to practice their T-Shaped skills. The following are several course practices that have been
used in the class that contribute to the students’ becoming more T-shaped:

• Visit clients’ workplace and jointly develop a desired concept of operation. These operational concepts
include current system workflow and shortfalls, benefits chain identifying initiatives and stakeholders beyond
software development, desired capability and workflow improvements, and systems constraints. In this practice,

 Barry Boehm et al. / Procedia Computer Science 153 (2019) 71–79 75
Boehm and Koolmonojwong / Procedia Computer Science 00 (2019) 000–000 5

students also learn and understand about the clients’ domain. For our class project clients, roughly 25% of projects
each are campus organizations, neighborhood small businesses, local community services, and local government.
Students need to understand the differences in their needs, budget, schedule, infrastructure, rules and regulations,
and technical resources.

• Jointly negotiate prioritized stakeholder win-win requirements. Students and clients have to balance ideal
capabilities with available development time and effort, understanding constraints, using a win-win requirements
negotiation tool (Winbook) [7] to identify minimum marketable features (MMFs) and to perform early software
sizing and costing. During the requirements negotiation, students practice concurrent engineering by concurrently
developing and iterating prototypes to clarify system usage, to provide proof of concepts, or to provide feasibility
evidence.

• Jointly develop evaluation criteria for choices of non-developmental items (NDIs) such as COTS, services,
and open source libraries; to assess candidate NDIs and their compatibility; and to converge on a best-fit process.
Based on our 25 years experience to date, there are 4 common process patterns currently found in this class:
Architected Agile, Single NDI, NDI-intensive, and Services-intensive. Students use a process selection support
tool [5] to help in selecting the right process.

• Jointly determine and prioritize project risks, develop risk mitigation plans. During the potential client
meeting, clients are informed about the core practices used in the class. One of the most important practices is
risk management. Students perform weekly risk analysis including continuing risk mitigation progress monitoring
and evolution. At the same time, clients acknowledge the risks and provide feedback to the team.

• Develop clients’ business case linking investments to quantitative and qualitative benefits. As part of the
project feasibility analysis, with inputs from clients, students determine added client investments such as database
conversion, maintenance, end-user training, system sustainment, potential business growth or income and develop
return on investment (ROI) and breakeven analyses.

• Identify complementary client activities. Besides software development activities, students have to also plan
for transition, deployment, and sustainment. This practice includes developing client transition/cutover plans,
creating life cycle support plans, identifying interoperability coordination, and software / hardware upgrades.

• Participate in 4 major milestone reviews with clients and instructors. Everyone presents their main
contributions, risks, concerns and future plans. Clients and instructors provide feedback and suggestions to the
team. All stakeholders commit on action items covering all aspects of the project.

• Develop initial increment and hold a client Core Capability Drivethrough (CCD) to validate feasibility,
identify emergent requirements, and clarify needed business process re-engineering. CCD is an activity that
allows the clients or potential users to have hands-on experience on the system. Compared to a general demo
presentation to the clients, with CCD, the clients have a better understanding about the system and can identify
further needed actions for the team or themselves.

• Jointly negotiate prioritized end-game revisions. Although the class provides a default list of project
deliverables, students may choose to tailor the process by negotiating with clients to opt out unnecessary items or
opt in additional activities such as added testing, deliverable architecture description, test suites or technical user
and maintenance manuals.

• Transition software and support materials. Clients are informed about the unavailability of students after the
semester is over, hence, students have to plan on knowledge transfer to clients, which usually include training to
clients, staff, maintainer, and initial end users. It is also quite often that students are hired part-time to help initial
system evolution.

4.2 Software Systems Engineering Course

We decided to offer the course as a foundation-stone 2-semster course that students would begin in their first
semester, often in parallel to some of the other courses rather than doing as capstone project course at the end. This
gave them a working appreciation of the content of the other courses, as they could see how their content applied to
their project experience.

CSCI577ab [8] are the software engineering project courses at the University of Southern California (USC)’s Master
of Computer Science with Specialization in Software Engineering (MSCS-SE). The main objective of the courses is

76 Barry Boehm et al. / Procedia Computer Science 153 (2019) 71–79
6 Boehm and Koolmonojwong / Procedia Computer Science 00 (2019) 000–000

to prepare students for software leadership careers through the 2050’s. Software Engineering I or CSCI577a in the
Fall semester focuses on software-intensive systems engineering, including system operational concept formulation,
requirements negotiation and definition, prototyping, COTS and services evaluation and selection, system and
software architecture definition, life cycle plans and processes, risk analysis, feasibility analysis, and verification
and validation. Software Engineering II or CSCI577b in the Spring semester focuses on software product
implementation, integration, test, documentation, transition, and maintenance with an emphasis on quality software
production.

In the course, students work as a team to develop e-services projects for small businesses, local government, campus
users, or nonprofit organizations. They perform various systems engineering roles such as Requirements Engineer,
System Architect, Operational Concept Engineer, Verification and Validation (V&V) Personnel, and Life Cycle
Planner. In addition, students can apply systems engineering practices and produce artifacts, such as Operational
Concept Description and System and Software Architecture Description. Moreover, working in teams allows
students to develop their projects in real world environment by having client representatives, 5-6 on-campus
students (co-located), and 1-2 remote students who are mainly working as professional systems engineers, and
perform V&V functions.

As mentioned above, the maturation of COTS products and cloud services have made it possible for many student
project teams to deliver essential software and data management capabilities for their small business, community
services, and local government services clients in a single semester. This has reduced enrollments in the second
semester of the project course, and caused us to drop the second semenster as a required core course for the MS-CS
degree in Sostfare Engineering. The current core courses for the degree are now the first semesteer of the project
course, Software Management and Economics, and Computer Systems Engineering and Architecture. This also
frees up students’ choices of the other key courses counting toward the MSCS-SE degree such as Requirements
Engineering, Testing and Analysis, Multimedia Systems Design, and Softare for Embedded Systems. This is
generally a positive development, as students taking the specalty courses can bring the knowledge to the student
projects, and vice versa.

4.3 The Incremental Commitment Spiral Model (ICSM)

The Incremental Commitment Spiral Model (ICSM) is a refined version of the original spiral process model. ICSM
covers the full system development life cycle consisting of five incrementally-defined life cycle phases
(Exploration, Valuation, Foundations, Development, and Operations phases). The ICSM, as shown in Figure 1, is
not a single one-size-fits-all model but a risk-driven framework for tailoring a process that best fits a project’s
situation by using the risk-based decision options at the end of each spiral phase. The ICSM is currently used as the
process model for the software engineering class, as supported by an Eletronic Process Guide (EPG) [5] developed
via the Rational Method Composer [9].

The four underlying principles of the ICSM are:

1. Stakeholder Value-based system definition and evolution - The project should be developed based on
satisfying the value propositions of all success-critical stakeholders. Otherwise, the stakeholders will
frequently not commit to their project roles, which will lead to project rejection or major rework.

2. Incremental commitment and accountability – Stakeholders do not commit to a single pre-defined set of
requirements and resource contributions, but commit incrementally as the nature of the system is better
understood. Otherwise, the project often becomes locked into out-of-date concepts of what the system should
provide its stakeholders, leading to project rejection or major rework.

3. Concurrent system and software definition and development – Contrary to sequential development, the
concurrent development of requirements, solutions, hardware, software, and human factors allows the project
to move faster, avoid premature commitments, and be more flexible to yield the best results.

4. Evidence and risk-based decision making – Making the evidence of project feasibility a first-class
deliverable provides a way to synchronize and stabilize the concurrently-defined system elements. Shortfalls
in evidence are uncertainties that identify the level of risk of proceeding without stronger evidence of
project feasibility.

 Barry Boehm et al. / Procedia Computer Science 153 (2019) 71–79 77

Boehm and Koolmonojwong / Procedia Computer Science 00 (2019) 000–000 7

Fig. 1. The Incremental Commitment Spiral Model – Phase View

The best practices based on the four ICSM principles have been applied to the class. A milestone system is used to
check the feasibility evidence, analyze risks, stabilize and synchronize the progress, and confirm commitment from
stakeholders. As shown in Figure 2, there is 1 minor milestone, Valuation Commitment Review, and 2 major
milestones, Foundations Commitment Review and Development Commitment Review in the Fall semester. Later,
there are 2 major milestones in the Spring semester, Re-baselined Development Commitment Review and Transition
Readiness Review, and 2 minor milestones, Core Capability Drivethrough and Operations Commitment Review. In
addition, there are various industrial tools and techniques applied to the class such as configuration management,
independent verification and validation, project plan, unified modeling language, feasibility evidence, and business
case analysis. Although these projects are small compared to industrial projects and could be overkill for projects at
this size, students are provided with an opportunity to build large-system skills.

5. Resulting Benefits

The main benefits are for the students. When they go to job fairs or hiring interviews, they have a portfolio describing
the project on which they participated, and can demonstrate their level of T-shaped capability in not only
programming, but also capabilities in economics, business case analysis, human factors in prototyping, life cycle
maintenance preparation, and domain skills in the domain of their team project. They get better job offers, and the
hiring companies subsequently come back looking for more graduates of the MS program. Another main set of
benefits come for the clients, who generally receive more capability than they expected, often after one semester rather
than two. And for the local charity organizations and local small businesses, the resulting software systems help
benefit the local USC community. Other beneficiaries are our Ph.D. students, who have a critical mass of projects on
which they can test their hypotheses. For example, they were able to show on the student projects that the value-based

78 Barry Boehm et al. / Procedia Computer Science 153 (2019) 71–79
8 Boehm and Koolmonojwong / Procedia Computer Science 00 (2019) 000–000

prioritization of features to inspect and test enabled projects to double the value of the results per hour of inspection
or testing. And as instructors trying to keep up with the latest in software technology and incorporate it in our courses,
the experiences of applying new technologies to practical projects enable us to keep up to date with rapidly-evolving
software technology and its effects.

Fig.2. Software Engineering Class Timeline in ICSM EPG

6. Conclusions

The students that we are educating today will have careers extending into the 2050s. It is hard to imagine what their
workdays will look like, but it is highly likely that they will be collaborating with experts in other disciplines to
create cyber-physical-human systems that improve the lives of their users. Even today, it is increasingly important
for software engineers to become more T-shaped to be able to help develop and evolve cyber-physical systems
representative of the future, such as internets of things, social networking applications, and more complex systems
of systems, all undergoing increasingly rapid change.

Our experience in developing, annually applying and evaluating, and evolving the curriculum and project course
guidelines and infrastructure across 25 years of technology and personnel changes, has shown us that the approach is
sustainable, but requires considerable effort to evolve. We need to keep the infrastructure stable while the projects
are going on, but our summers are busy rebaselining the infrastructure and tools to accommodate the feedback in the
client evaluations, student critiques, and project reviews.

So far, we have been able to accommodate paradigm shifts from programming-intensive to COTS-intensive to cloud

 Barry Boehm et al. / Procedia Computer Science 153 (2019) 71–79 79
Boehm and Koolmonojwong / Procedia Computer Science 00 (2019) 000–000 9

services-intensive applications; from pure plan-driven to varying mixes of plan-driven and agile development; and
from desktop to mobile and Internet of Things applications. The Electronic Process Guide has made the evolution
much more achievable. Again, overall, this experience also requires us to keep at the frontier of software
engineering practice, and to continue to satisfy clients, students, and hiring managers in providing the benefits of
having more T-shaped, system-thinking software engineers.

References

[1] M. Maier, “System and Software Architecture Reconciliation,” Systems Engineering 9 (2), 2006, pp. 146-159.
[2] M. Paulk, C. Weber, B. Curtis, and M. Chrissis, The Capability Maturity Model: Guidelines for Improving the Software Process, Addison

Wesley, 1994.
[3] J. Ferguson, “Crouching Dragon, Hidden Software: Software in DOD Weapon Systems,” IEEE Software 18(4), 2001, pp. 105-107.
[4] B. Boehm, A. Egyed, D. Port, A. Shah, J. Kwan, R. Madachy, "Using the WinWin Spiral Model: A Case Study," IEEE Computer, Volume

31, Number 7, July 1998, pp. 33-44.
[5] S. Koolmanojwong, and B. Boehm, "Educating Software Engineers to Become Systems Engineers", Proceedings of the 24th Conference on

Software Engineering Education and Training - CSEET, Waikiki, HI, 2011.
[6] B. Boehm, J. Lane, S. Koolmanojwong, and R. Turner, The Incremental Commitment Spiral Model, Addison Wesley, 2014.
[7] N. Kukreja and B. Boehm, Process Implications of Social Networking-Based Requirements Negotiation Tools, In International Conference

on System and Software Process (ICSSP) 2012
[8] CSCI577 – Software Engineering class – http://www.greenbay.usc/edu
[9] P. Haumer, IBM Rational Method Composer: Part 1: Key concepts, December 2005,

http://www.ibm.com/developerworks/rational/library/dec05/haumer/.

